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A method for generating boundary fitted orthogonal curvilinear grids in 3-dimensional 
space is described. The mapping between the curvilinear coordinates and the Cartesian coor- 
dinates is provided by a set of Laplace equations which, expressed in curvilinear coordinates, 
involve the components of the metric tensor and are therefore non-linear and coupled. An 
iterative algorithm is described, which achieves a numerical solution. Grids appropriate for 
the calculation of flow fields over complex topography or in complex flow passages as those 
found in turbomachinery, and for other engineering applications can be constructed using the 
proposed method. Various examples are presented and plotted in perspective, and data for the 
assessment of the properties of the resulting meshes is provided. 0 1989 Academic Press, Inc. 

1. INTR~DUCTI~N 

The need to solve Reynolds equations expressed in domain fitted curvilinear 
orthogonal coordinate systems has created a demand for an efficient method to 
generate such meshes for given geometries. Reasons for this include the reduction 
of numerical diffusion during the solution of Reynolds equations (as one of the grid 
coordinates can approximate in direction the expected streamlines of the flow), the 
convenience in the expression of boundary conditions in complicated geometries, 
and the avoidance of the complexities and the substantial computer time and 
storage requirements usually associated with the expression of Reynolds equations 
on non-orthogonal meshes. 

Most of the literature on the generation of orthogonal meshes is on 
2-dimensional methods. There are also algorithms, in both 2- and 3-dimensional 
spaces, for the generation of non-orthogonal meshes fitted in the computational 
domain. Some of these orthogonal and non-orthogonal approaches will be men- 
tioned in the following. 

In the non-orthogonal case, of importance is the work of Thompson et al. [ 1, 23 
and Thomas et al. [3, 41 in which a system of Poisson equations is employed and 
inverted to give the physical coordinates as functions of the curvilinear coordinates. 
Amsden and Hirt [S] also constructed such grids through an algebraic procedure. 
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For the generation of orthogonal meshes in 2-dimensional space many 
researchers (Barlield [6], etc.) use conformal mapping. The essential characteristics 
of this approach are the absence of sufficient flexibility in mesh control and the fact 
that small changes in the shape of the domain can drastically alter the position of 
the mapped boundary points, Pope [7] attempted to alleviate the problem of 
conformal mapping, which is the double requirement of orthogonality and equality 
of the scale factors, by constructing orthogonal mappings in which the ratio of the 
scale factors is not unity but an adjustable constant called “scaling factor.” Potter 
and Tuttle [8] and Davies [9] suggested ways of orthogonalisation of non- 
orthogonal meshes. This technique sometimes leads to discrete orthogonal coor- 
dinates, in the sense that there are discontinuities in one family of grid lines. 
Haussling and Coleman [lo] worked on the modification of the technique 
described in Thompson et al. [l, 21, to make it suitable for the generation of 
orthogonal grids by means of enforcing conditions on the coefficients of the 
inverted system. Mobley and Stewart [ 111, Visbal and Knight [12], and Ryskin 
and Lea1 [13] included Laplace equations in their generating systems of elliptic 
equations. Reviews and other articles on orthogonal and non-orthogonal grid 
generation can be found in [14]. 

The work presented here follows our previous work [ 151 on the generation of 
orthogonal grids in 2-dimensional space. In the following paragraphs we present the 
mathematical and numerical formulation of the problem and the application of our 
algorithm to some geometries of practical interest. 

2. MATHEMATICAL FORMULATION 

A vital problem in the area of 3-dimensional grid generation is the problem of 
existence. The theoretical statement of the conditions under which there is a 
Euclidean manifold that can be mapped on a specific region of interest, and satisfy 
the orthogonality conditions there, meets significant mathematical complexities but 
there is plenty of evidence (Ryskin and Lea1 [ 131, Sokolnikoff [ 161, etc.) that such 
a mapping exists in many practical cases. In the present work we assume that there 
is a Euclidean curvilinear orthogonal coordinate system which can be assigned to 
a 3-dimensional region of practical interest and describe how mapping functions 
can be derived. 

Bearing the above in mind, we establish the system to be found as our system of 
reference in the physical space, where the Cartesian coordinates x, y, z are known 
to satisfy 

v2x = 0, v2y = 0, v2z = 0. 

We introduce the orthogonal curvilinear coordinates as 5, q, [. The Laplace 
operator can be expressed in its appropriate form for the coordinates 5, v], 5 to give 
x, y, z as functions of <, ‘I, i. 
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The formulation of the problem must ensure a solution of the Laplacians which, 
in its Cartesian form, should read 

grad x = (1, 0,O) 

grad y= (0, 1,0) 

gradz=(O,O, 1) 

(2) 

everywhere in the domain of interest. 
The Cartesian coordinates on the entire boundary of the physical domain are 

known and it is important that they satisfy Eq. (2). It is these boundary values for 
x, y, z that will secure that (2) are satisfied in the interior too. Each of these 
equations is obviously a solution of the respective Laplacian in the entire domain 
unless it is not satisfied on the boundaries. This can be easily seen if (2) are 
substituted in the Cartesian form of (1). The solution will be exactly the same with 
(1) expressed in our reference system since they are tensor equations ! We face a 
typical boundary value problem for which there exists a unique solution (‘Courant 
and Hilbert [ 171). Thus, since (2) form a solution, this will be the unique solution. 
This means that the x, y, z are uniquely expressed in terms of 5, q, [ in the desired 
way. In other words, the solution of (1) on our curvilinear system of reference, the 
Cartesian coordinates of the physical domain boundaries being known, is certain to 
be (2) if expressed in the Cartesian coordinates. Of course, (2) will assume a 
different form in our reference system. We aim to derive this form of the solution 
because it will provide us with the desired relations which give x, y, z as functions 
of 5, rl, i. 

In the following we will assume summation on repeated indices. Let h, be the 
elements of the covariant metric tensor of a multi-dimensional coordinate system 
4’, t*, . ..1 4”, sometimes called metric coefficients, which define the length of the 
element of arc through the fundamental quadratic form 

ds* = h, dt’ d(/ 

If h is the determinant of this tensor and hV are the elements of the corresponding 
contravariant metric tensor, the Laplace operator in curvilinear coordinates can be 
written as 

&.(ji;h’$). (3) 

When the metric coefficients are associated with an orthogonal curvilinear frame, 
(3) reduces to 

(4) 
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For Cartesian coordinates (4) simply reads 

a2 

Applied on x’, x2, . . . . xn, denoting the Cartesian coordinates, (4) will give (1) as 
strongly coupled non-linear equations with h, given by 

Equation (4) can be used to create the required mapping and we have indeed 
done so in some applications. However, a step by step orthogonalisation of an 
initial grid can provide a practical alternative way to be followed in the establish- 
ment of a numerical solution algorithm in order to ensure that convergence 
problems will be eliminated. 

For a stepwise solution procedure simplifications in the form (3) of the Laplace 
operator are introduced. The cross-derivative terms are omitted and h” is set equal 
to l/h,, as for orthogonal coordinates, giving 

The above simplifications appear reasonable as we approach orthogonality. 
In another way of looking at the simplification of (3), the Laplace operator 

applied on a scalar V*cj may be considered as V . (Vq5) =V. F. The expression of 
divergence in curvilinear coordinates is 

Replacing F’ by hU(a#a<i) which is the form for the gradient in curvilinear 
coordinates we get (3) applied on 4. However, if we assume that F’ can be 
approximated by l/hii @jagi, which is strictly accurate only in the case of 
orthogonal coordinates, we arrive at the simplified form appearing in (6). 

Hence the task can be carried out using the simpler form (6) and we have found 
the tedious calculations implied by (3) unnecessary. 

We introduce a “deviation factor” D as 

D=.J7qgT. 
The simplified Laplace operator for the non-orthogonal system then reads 

(7) 

I a -.- 
Ji; atlj 

DJh,, ...hj~IJ-Ihj+,j+l...h”, a 
hU > ap (8) 
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We define the scale factors as h, = & and, for three dimensions, if 5’ = 5, t2 = ‘1, 
t3 = [, we get (1) in the form 

$(Db$$!t)+.c(DyJ 

+$(D!M)=O, 4=x, y,z. (9) 

The solution of these equations will provide the coordinate transformation. Since 

h, 
cos aii= Ji& 

where a, is the angle formed by the ci and [j lines in the physical space, (7) can 
also be written as 

D = (2 cos sea cos a,,1 cos ais - cos2 at,, - cos2 a,[ - cos2 ait + 1) 112 . (10) 

Comparing (4) and (8), it can be seen that the stepwise orthogonalisation proce- 
dure may be realised by imposing a stepwise approach of D to unity. The imposed 
Dimp for the next step is expressed in terms of the actual D of the previous step as 

Di,p=D+(l-D)/‘S, s>l (11) 

The scale factors involved in (9) can be obtained through (5) as 

(12) 

However, since the simple substitution of (12) into (9) was observed to lead to 
numerical instabilities in some cases, our practice was to use this definition on the 
boundaries and, for one of the curvilinear coordinates, for example 5, in the interior 
of the domain, and employ a kind of “aspect ratio” functions 

for the rest. Definition (13) was applied for r’s all over the domain boundary. Since 
h,, h,, h, were observed to vary smoothly in the interior, simple interpolation 

r(5,rl,~)={(1-~5)r(0,9,i)+tlr(l,~,5)+(1-~)r(5,0,i)+~r(5,1,i) 

+ (1 - i) r(T, 93 0) + ML 4-7 1) j/3> r=rStl,r,C (14) 

was used to yield their values there. Then the scale factors could be provided by 
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3. FINITE DIFFERENCE DISCRETIZATION 

The integration of (9) over the finite volume shown in Fig. 1 provides their finite 
difference expression, which is suitable for the numerical solution. The result is of 
the form 

Cd,= C&L?+ Cdw+ chd,+ C&s+ C,#,+ CL&,, (15) 

where (b = x, y, z and 

I ~~.I,J-I,K$- _ ! _---- 

/ 
/ - / / d 

FIG. 1. The computational cell for the f.d. equations. 
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The defining of the scale factors equation (12) where used, was discretized as 

h JAx2+dy2+dz2):!;n, 
r’ A<’ . (16) 

4. BOUNDARY CONDITIONS 

The typical domain under consideration was, in the physical space, bounded by 
six curved surfaces of freely determined shape with the single restriction that they 
intersect each other orthogonally (Fig. 2). If this requirement is not satisfied, the 
problem is apparently not well posed. In practice, however, sensible deviations from 
this rule will not prohibit convergence. 

Let x3 =f(x’, x2) be the equation which describes one of the boundary surfaces 
(x = x(y, z), y = y(z, x), z = z(x, y) as appropriate). It is obvious that, for reasons 
of economy in computing, a very fast and efficient method is needed to impose the 
orthogonality of the mesh lines to the boundaries. 

Consider the calculation of the normal from a point (xl’, x2’, x3’) to the 
x3 =f(x’, x2) surface. The system 

a((xlo- x1)2 + (x20 - x2)2 + (x30 -x3)') = o 
ax' 

a((xlo- x1)2 + (x20 -x2)2+(x3o-x3)2) 
ax2 

=o 

f(x’, x2) -x3 = 0 

FIG. 2. Domain of computation. 
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may be used which finally adopts the form 

i,( 

x1o + x3o ~fw$“” _ x3 8f(;f2) 
X1 

x2 = 

X3 

x2o + x3o .(,;;*I _ x3 afc;&x2) x: 
=g x 

0 X3 

f(x', x2) 
> 

or, concisely, 

x =g(x). (17) 

For a given initial x0, we can construct a sequence of vectors xK with the formula 

XK=g(xK-‘I). (18) 

It can be mathematically proved that this sequence converges for an appropriate 
choice of x0 if 

is true in a neighbourhood of the foot of the normal to be calculated. Introducing 
under relaxation into (18), through an under relaxation factor o, we arrive at 

XK=(l-W)XK-l+Wg(XK-l) (19) 

and convergence is assured for much greater slopes of the boundary surface, even 
greater than 70” for both directions x’, x2 as we found in our applications of the 
method, where we used 

0 = 0.2. 

The main advantage of this procedure is its rapid convergence, and, hence, the 
very little computational effort required. However, if greater slopes relative to the 
independent variable plane for the surface descriptive functions f (near 90”) are 
involved in regions of the domain boundaries, and if the method described proves 
computationally ineffkient, another method should be used on these regions. The 
expression of f in other coordinates or the representation of the surface by a 
sufficiently large number of plane elements can provide such alternatives. 

In some engineering applications there is need for more direct control over the 
position of the boundary nodes than Neumann type boundary conditions would 



j-DIMENSIONAL ORTHOGONAL GRIDS 277 

allow. The imposition of Dirichlet boundary conditions is a topic for investigation. 
Clearly, orthogonal quasi-2-dimensional grids on curved surfaces will have to be 
generated on the boundaries of the 3-dimensional domain, where Dirichlet bound- 
ary conditions will be used. This can be achieved through a simple extention of a 
2-dimensional method of orthogonal grid generation, for example, the method 
described in [ 151. 

5. POLYNOMIAL APPROXIMATION OF A CURVED SURFACE 
THROUGH THE LEAST SQUARE METHOD WITH 

Two INDEPENDENT VARIABLES 

In complex topographies we often know the shape of a surface through the coor- 
dinates of a set of its points but there is no analytic expression to establish the 
boundary conditions in the way mentioned in Section 4. We proceed with the task 
of constructing analytic approximations for these cases. 

Consider that m surface descriptive vectors (x*, y*, z*) are known. We will 
approximate the values z* with a polynomial z(x, y) so that for any (x*, y*, z*), 

z* 2 z(x*, y*). 

Let the maximum power of each independent variable be n. Then the polynomial 
is of the form 

z = q, + a,, y + L-lo2 y2 + ‘. . + a,, y” 

+a,,x+a,,xy++,,xy 2 + ... fUl,XJJfl 

+ ano-xn + a,, x”y + un2xny2 + ‘. + unnxnyn, (n+ l)‘<m. 

The quantity 

E= f (z,-z,!)~ 
,= I 

is minimum if the (n + l)* equations 

aE 0 -= 
a% ’ A 4 = 0, 1, . . . . 4 

are satisfied. 
Thus we have a system of (n + 1)2 equations with (n + l)* unknowns, the 

coefftcients upy. After the calculations, the kth equation of this system becomes 

581 ,X2,2-3 
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c z*x*j.y*y*y = a,, 1 x*iy*P + a,, C x*j.y*p+ 1 

+ ao2 C x*j.y*p+2 + . . . +a,,Cx*‘-y*fi+~ 

+amCx *~+~y*~+a,,~x*“+ly*~+l+a,2~x*“+ly*”+2 

+ . . . +a,,~x*~+~y*~+~+a,,~x*~.+~y*~+a,,~x*~+ny*~+l 

+ an2 C x 
*j.+“y*P+2+ ,.. +an”CX*i+ny*p+n, 

where 

p=k-l(n+ l)- 1. 

6. SELECTION OF THE 5, q, ( DISTRIBUTIONS 

An inspection of the coefficients of (15) will verify that we have freedom in 
selecting convenient dt, dq, A[, to meet the requirements of the specific application 
by effectively controlling the spacing of the resulting mesh in the physical domain 
through the particular choice of the useful curvilinear coordinate surfaces of the 
mapping. Each of these surfaces is associated with one particular value of one of the 
5, q, { and, therefore, by specifying appropriate A<, Aq, A[ distributions we can 
effectively choose the mesh surfaces which will be calculated. 

Possibilities include 

l At, A?, A[ constant throughout the field. 
l At, Ay, Ai terms of geometric progressions. 
l A<, Aq, A[ polynomially distributed. 

7. INITIAL GUESS 

Execution time depends on the properties of the initial grid to be orthogonalized. 
It is sufficient to apply as initial values for the solution of Eq. (9) the results 
obtained from the solution of (9) with the assumptions h, = h, = h; = 1 and D = 1. 
In other words, the initial values of x, y, z are found by solving 

for 4 = x, y, z. 

(20) 
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FIG. 3. Orthogonal mesh over a gentle topography 

8. NUMERICAL SOLUTION PROCEDURE 

The numerical algorithm, which applies the method under discussion, has the 
following steps: 

1. With arbitrary preliminary values, solution of (20) leads to the initial guess 
for 45, v, 0, ~(5, ‘I, 0, z(t, v, i) and, through them, for Wl, v, 0, h&t, v, 0, 
h,(t, q, 0, h&t, v, 0 by use of (lo), (12) (13), (14). 

2. These values of the metrics being held constant, (9) are effectively 
decoupled and each of them is solved iteratively, in combination with the boundary 
conditions described in the respective chapter, for the computation of new 
XC& 92 i)? Y(k q> i), 443 ?> 0. 

FIG. 4. Orthogonal mesh over an axisymmetric Gaussian hill. 
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FIG. 5. Orthogonal mesh in a terrain composed of Gaussian hills. 

FIG. 6. Partial view of the mesh of Fig. 5. 

FIG. 7. Partial view of the mesh of Fig. 5. 
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FIG. 8. Partial view of the mesh of Fig. 5. 

3. The values of the metrics are computed with the latest data through the 
corresponding relations (lo), (1 l), (12) (13), (14). 

4. Step (2) is reentered unless convergence has already been reached. The 
latter is assumed when ~(5, v], 0, y( 5, q, c), ~(5, ye, i) do not change more than a 
small number e, even when the new metrics are inserted in the coefficients of (9). 

For the calculation of the angles involved in (10) we have used spline inter- 
polation through the grid points to approximate the grid line shape and, hence, the 
slopes at these points. 

It is clear that the iterative scheme described here cannot converge if the metrics 
involved in the equations do not converge. The deviation factor can only converge 
to unity because of (11). 

Consider that a solution has been reached and, thus, D = 1. Algebraically 
manipulating expression (10) for the deviation factor we see that this can be 
satisfied if, and only if, the three angles a<,,, a,,[, ai5 are 90”. In other words, if the 
method converges, then D = 1 and the coordinate system is orthogonal, as D are 
calculated on the finally generated mesh. 

What we have not provided is a full mathematical investigation of the conditions 
under which the algorithm should always converge, in the sense that for a practical 
domain of interest, of the type discussed in paragraph (4), there does or does not 
exist a Euclidean manifold to be yielded, which will be orthogonal there. Such an 
attempt seems to meet many theoretical obstacles and may be the scope of future 
work. However, we will mention that the procedure converged in all of our 
applications. 

9. EXAMPLES OF APPLICATION 

In this paragraph, we present orthogonal grids for various geometries as 
generated with the algorithm described. For the computations we have used a 
CYBER 171 CDC computer and for the plots a BENSON 2320 plotter. 
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FIG. 9. The Athens topography in perspective 

Figure 3 corresponds to the numerical solution over a gentle topography, 
mathematically presented as the product of harmonic functions 

z = sin(2nx) sin(2ny)/20. 

The differences A[ are terms of a geometric progression with common ratio 
o5 = 1.3, and A<, A? are equally distributed. 

Figure 4 shows the results of the algorithm over an axisymmetric Gaussian hill. 
The equation which describes the surface of a hill of this kind is 

z = a . exp( - r*/b’), 

where r is the horizontal distance from the axis of symmetry of the hill. For this 
application the maximum height and the characteristic length are a = 50 m and 
b = 250 m, respectively. It should be mentioned here that for every three [ = const 
grid surfaces, only one is presented for reasons of figure clarity. At, Aq, A( form 
geometric progressions with o5 = 0.8, o9 = 0.8, oy = 1.25, respectively. 

The solution obtained over a composite topography is shown in Fig. 5. The 
associated equation is 

z = 60 exp( - ((x + 2y - 200)2 + y2)/2502) 

+ 30exp( -((2x- y + loo)* + (x + 150)*/200*) 

which means that the boundary surface is a superposition of two non-axisymmetric 
Gauss hill surfaces. Figure 5 has been broken up to produce Fig. 6, 7, and 8, each 
related to a set of grid lines. 

In the following Fig. 9 the topography of the Athens vicinity is shown in perspec- 
tive, where the crosses mark mountain tops of height greater than 600 m. The 
plotted area is 70000 by 50000 m. The surface geometry has been polynomially 
approximated, according to the theory described in paragraph 5. The maximum 
power of each independent variable of the polynomial is 7 and its coefficients have 
been calculated with 121 surface descriptive vectors as data. For greater accuracy 

FIG. 10. Orthogonal mesh in the Athens topography. 



%DIMENSIONAL ORTHOGONAL GRIDS 283 

in the representation, the surface can be better approximated by employing greater 
powers in the polynomial and more descriptive vectors, at the expense however of 
computer time, mainly during the application of the boundary conditions, as the 
surface function involved is then more demanding. The choice is dictated by the 
user needs but we should mention that the computer time requirements are in any 
case moderate. Figure 10 includes some of the generated grid surfaces and shows 
the ground anomalies. In the example shown of the Athens complex, dy are equally 
distributed, A[ are terms of a geometric progression of oy = 1.5 and A< are 
according to the polynomial 

5 = 0.842261075 I& - 1.682926575 1 f + 1.860954665 1 eq 

with lleq denoting the value of r for equidistributed A(. 
The last example presented here is a channel of a type which is met in axial 

turbomachinery. The domain is bounded by two cylindrical surfaces of radii rU = 1, 
rd = 0.5, respectively, two plane surfaces at distance x = 1 (equations x, = 0, x, = 1, 
respectively), and two radially extending at angles 4, and 4, from a plane which 
contains the axis of the cylindrical boundaries. These angles change polynomially. 

4, = 0.5235988 + 0.0887974x - 1.837 1 89x2 + 1.224792x’ (rad) 

4, =0.0887974x - 1.837189x2 + 1.224792x3 (rad). 

Figure 11, which shows the resulting mesh, is accompanied by its component 
Figs. 12 and 13. 

A typical example of the way the method converges is shown in Fig. 14 which is 
related to the Gaussian hill of Fig. 4. Convergence was reached in 14 computations 
of the coupling parameters, and 91 iterations in total for the solution of the 
artificially decoupled equations. 

As measures of deviation from orthogonality, the following parameters are 
introduced 

Del = h - 7421 
7cP 

. 100% 

D,, = I% - d21 . 100% 
n/2 

4, = laK - 71/2l . 100%. 
?c/2 

Information about the mean and maximum deviation from orthogonality is 
provided in Table I, where the following equations have been used for a lxmxn grid 
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FIG. 11, Orthogonal mesh in a channel of axial turbomachinery. 

_-- 

D~'~MEAN = 
4, + 4, + 4, 

= c D&, j, k) + D,,&, j, k) + D& _k k) 
3 i = 1, __, I 3Emn 

j= I. . . . . M 

k = 1. I,.( n 

~~~~~~~~ = MAX{ [y,AxI D,,(i, j, k), ,FfiFL D,& _A WY iyeXI D& _A W 
j= I.‘...,‘m j = I,‘..., m 

1 ..I 
, = I, . . . . m 

k = I, __.1 n k = 1. .._I n k = 1, . . . . rz 

Finally, Table II includes parameters which provide information about the rate 
of convergence and computer execution time and storage requirements. 

FIG. 12. Partial view of the mesh of Fig. 11. 
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FIG. 13. Partial view of the mesh of Fig. 11. 

The convergence factor is defined as 

C=e/(u/(l- l)(m- l)(n- 1))1’3, 

where e is the maximum difference lxhew - xbld(, xi = x, y, z allowed for the deter- 
mination of convergence, and v is the total volume of the domain of the mapping 
in the physical space. 

The total number of iterations needed for the solution of (9), treated as 
decoupled and with the coefficients only varying in a stepwise way, is presented 
under the column of Laplace iterations. 

The maximum execution field length is an octal number and shows the maximum 
number of words which were required in the central memory of the computer 
during execution. Each word consists of 10 characters. 

The CPU computer time requirements could be regarded as modest, however, 
they are specific to each case considered and the complexity of the geometry. 

10. CONCLUSIONS 

This study has addressed the problem of generating orthogonal curvilinear 
coordinates in spaces of practical importance. The gradual orthogonalisation of 
non-orthogonal meshes with a system of non-linear and coupled covariant Laplace 
equations was achieved through the development of a flexible and economic 
numerical algorithm. This algorithm has allowed the generation of orthogonal 
curvilinear meshes in various geometries. Questions regarding the existence or 
uniqueness of solution, however, have to be theoretically considered. The existence 
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Computation 
of the 

coupling parameters 

Iteration step 
for the solution 

of the 
Laplace equations 

&-- 1 ---0 

I 
I ---20 
I 

l--- I 
I 

2--- I 
I 
I ---40 
I 

3--- I 
I 

4--- I 
I 

5--- I 
I 
I ---60 
I 

6--- I 

Et--- I 
I 

9--- I 
I 

I --a0 
I 

10--- I 
I 

ll--- I 
I 

12--- I 
I 

13--- I 
I 

14--- I 

convergence 

FIG. 14. An illustration of the iterative solution sequence. 

TABLE I 

Figure 
(%) (%) 

DS’c.‘MEAN DEW.%AX DMEAN DMAX D MIN 

3 - 1 1 0.9993 
4 - 1 1 0.9999 
5 - 1 1 0.998 1 
9 1 6.48 1 1 0.9995 

11 1.7556 9.5433 0.9999 1 0.9986 
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of solution in the example cases considered has been indirectly proved by the con- 
vergence of the iterative solution procedure and the generation of orthogonal 
curvilinear meshes in 3-dimensional spaces. 
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